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Abstract:  In this paper the distribution of natural waves in the viscoelastic disc is discussed.  The spectral problem is 

reduced to solving a system of ordinary differential equations of the first order with variable complex coefficients. The 

solution of differential equations is expressed by a special cylindrical Bessel functions and Hankel. The frequency 

equations are solved by numerical methods Muller and Gauss. The problem is solved numerically by the Godunov 

orthogonal sweep method and Mueller. Compares the numerical results.  
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1. Introduction. 

One of the central tasks of dynamic elasticity theory is the study of the spread of a perturbation of the stress-strain 

state in deformed bodies (including viscoelastic properties) with geometric structures [1,2,3,4]. The main features are 

the length of the waveguide in one direction, as well as restrictions and localization of the wave beam in other 

directions. Accounting for the damping capacity of the waveguide material plays an important role in the dynamic 

behavior of the design.  

In an infinite homogeneous isotropic medium there are only waves P and S. However, where there is a surface 

separating media with different elastic properties can propagate waves. The amplitudes of these waves decreases with 

the distance from the surface. 

The study of the properties of guided modes is also important in connection with the development of techniques for 

the use of acoustic emission intensity level assessment of structural elements [5,6,7]. The electronic technology has 

been widely used broad beams of surface waves. The most important for the practice of (seismic) types of surface 

waves are Rayleigh waves propagating along the free surface of the solid medium. The dynamic theory of elasticity is 

known [8,9] that the surface Rayleigh wave covers half with straight boundaries. The study wave propagation in the 

body with curved areas is an urgent task. 

2. Statement of the problem and methods of solution. 

Let us consider the propagation of surface waves on the cylindrical body located in a flat deformable state. The 

equation of a viscoelastic body motion in cylindrical coordinates (r,  ), takes the form [10,11] 
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   (3)    

 tf – arbitrary function of time;   tR and   tR – relaxation kernel; 0  and 0 – instantaneous 

elastic moduli;   - material density,  0
~   соnst  - Poisson's ratio.  

   External loads on the free cylindrical surface 1Rr   available, i.e.  0,0   rrr     or   
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  – modulus operator, which has the form [12,13]:  
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  tRE – relaxation kernel; 
01E – instantaneous modulus.  

In the center of the cylindrical body (r = 0) is assumed, that the movement is limited. Replace the relations (3) and 

(5) approximate species [12] 
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where  R - real constant,  
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 - respectively, the cosine and sine Fourier transform of the relaxation of the core material. After some simple 

transformations ( 1RRRR Е   ) equations motion (1) can be converted into a  
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The system of differential equations in partial derivatives (5) can be solved analytically, ie It obtained dispersion 

relations containing the Bessel function of the 1st kind of a complex argument. Dispersion relations are presented in 

the form of transcendental equation is solved by Muller. To do this, use the asymptotic Bessel functions for small and 

large values of the argument. 

   With the help of corresponding transformations [14] a system of differential equations (5) can be expressed as the 

beat  

                                             ,, 22

22

2
22

12

2

z
z c

t
c

t













 (6) 

where     .
11

2

2

22

2
2
















rrrr
 

         

 A particular solution of equation (6) in the form: 
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Here UW ,  - Amplitude has a complex function that depends only of r. Wave number and phase velocity are 

expressed by the following formulas                
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    where       - wave number, a is the phase velocity of the wave propagation. 

To clarify their physical meaning, consider two cases: 

    1) R   ; IR i   (or с = сR +icI), then the solution (7) has the form of a sine wave in x, whose amplitude 

decays over time; 

     2) IR i  ; R  (or с = сR) then at each point x fluctuations established, but x decay. 

Substituting (7) to (6) proceed to the next Bessel equations 
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 The solution of equation (8), expressed in terms of cylindrical Bessel function of the 1st and 2nd kind of n-th 

order 
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where J n , nY  -Bessel function of the 1st and 2nd kind of n - th order. In the disk center (r = 0) is assumed, that the 

movement is limited. With this expression conditions can be found where B = 0. Then, the solution takes the form: 
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At the same time the movement of the cylindrical body (5), and (10) takes the form: 
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Therefore, for (4), we obtain two set of boundary conditions which lead to two homogeneous equations with 

two unknowns nА  and nD  
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Where ./ 12 cс   

To make such a system of equations have a nontrivial solution, the determinant of the coefficients must be 

zero. This condition gives the dependence of the frequencies (ωR) and damping coefficients (ωI) the wave number. 

Dispersion equation has the form: 
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    Numerical results. 

   If you know the n = 0 and 1, we can calculate the Bessel and Neumann functions of any order of the following 

recurrence relations (Fn=Jn;Yn):          
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  Table 1.  Some values of the Bessel functions in.Depending on arguments  (
10 ). 

z J0 (z) )(0 zY  

0.0 0.99041 -0.00021 -1.97937 0.11159 

0.1 0.99765 -0.00085 -1.53476 0.11269 

0.2 0.99062 -0.00340 -1.08176 0.11597 

0.3 0.97895 -0.00761` -0.80837 0.11999 
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          For series (14) is not greater than the remainder of the first discarded term. If you choose to  U0(ρ, ф) and V0(ρ, 
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Results of calculations are shown in Table 1. As the relaxation nucleus viscoelastic material take a three-parameter 
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 Rzhanitsina -Koltunova [7], having a strong singularity, where ,,A - material parameters [7]. 

Assume the following parameters:  1,0;05,0;048,0  A .   The transcendental equation (13) are solved 

by Muller. At the same time, we have identified two root (13) (v=0,3;  100) 
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=0,92c2, and the 

Rayleigh wave velocity сR=0,9194с2. Results are presented in Figure 1. Note the characteristics of the curve 1, the 

phase velocity tends to infinity when the wave number is zero. A wave number tends to infinity, the phase velocity of 

the Rayleigh wave tends to speed for a half.  

 

  

 

 

 

 

 

                                            

                                      

 

 

 

 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The dependence of the real part of the phase velocity of the wave number. 

 

     The first and the second mode, the wave number tends to zero, has a cut-off frequency, ie, the phase velocity tends 

to infinity. At large wave numbers limit the phase velocity of the mode coincides with the velocity of the Rayleigh 

wave. At the cutoff frequency radial displacements are zero, and the cylinder is deformed flat in a static state. In the 

second mode to the cutoff frequency observed only real parts and imaginary parts adopt finite values with the desire of 

the wave number to zero. 

    In contrast to the well-known, in this case, in addition to the speed of Rayleigh waves with large wave numbers  
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  Fig.2. The dependence of the imaginary part of the phase velocity of the wave number. 

 

On the surface of the cavity and apply the Rayleigh wave, but the complex (Fig 2).  
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If we use (11), (12) and (15), we obtain the following amount of displacement 
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Figure 3. Respective first waveform (a) and second (b) phase velocities. 
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The amplitudes of the movements represented in the form  
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Numerical calculations are performed for    3/1,33.0   .  The calculated displacement amplitude shown in 

Fig. 3 and Figure 4. From the figures it is clear that movements are localized on the surface of the cylinder.  

              

Conclusions. 

1. It has been established that there is an infinite set of roots of the transcendental equation (13), the first root at 

large tends to Rayleigh-wave speed с=0,92с2 .  The phase velocity tends to infinity when the wave number is zero, ie, 

there is a cut-off frequency. 

2. It was revealed that the cylindrical disc movement localized on the surface of the cylinder.  

3. Accounting viscous properties of the material reduces the phase velocity values on 10 – 15%. 
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